DATA SHEET

TDA8358J

Full bridge vertical deflection output circuit in LVDMOS with east-west amplifier

PHILIPS

Full bridge vertical deflection output circuit in LVDMOS with east-west amplifier

FEATURES

- Few external components required
- High efficiency fully DC-coupled vertical bridge output circuit
- Vertical flyback switch with short rise and fall times
- Built-in guard circuit
- Thermal protection circuit
- Improved EMC performance due to differential inputs
- East-west output stage.

GENERAL DESCRIPTION

The TDA8358J is a power circuit for use in 90° and 110° colour deflection systems for 25 to 200 Hz field frequencies, and for $4: 3$ and $16: 9$ picture tubes. The IC contains a vertical deflection output circuit, operating as a high efficiency class G system. The full bridge output circuit allows DC coupling of the deflection coil in combination with single positive supply voltages.

The east-west output stage is able to supply the sink current for a diode modulator circuit.

The IC is constructed in a Low Voltage DMOS (LVDMOS) process that combines bipolar, CMOS and DMOS devices. DMOS transistors are used in the output stage because of absence of second breakdown.

QUICK REFERENCE DATA

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Supplies						
V_{P}	supply voltage		7.5	12	18	V
V_{FB}	flyback supply voltage		$2 \times \mathrm{V}_{\mathrm{P}}$	45	66	V
$\mathrm{I}_{\text {q(P)(av) }}$	average quiescent supply current	during scan	-	10	15	mA
$\mathrm{I}_{\mathrm{q}(\mathrm{FB})(\mathrm{av})}$	average quiescent flyback supply current	during scan	-	-	10	mA
$\mathrm{P}_{\text {tot }}$	total power dissipation		-	-	15	W
Inputs and outputs						
$\mathrm{V}_{\mathrm{i}(\mathrm{p}-\mathrm{p})}$	input voltage (peak-to-peak value)		-	1000	1500	mV
$\mathrm{I}_{0(p-p)}$	output current (peak-to-peak value)		-	-	3.2	A
Flyback switch						
$\mathrm{I}_{\text {(peak) }}$	maximum (peak) output current	$\mathrm{t} \leq 1.5 \mathrm{~ms}$	-	-	± 1.8	A
East-west amplifier						
V_{0}	output voltage		-	-	68	V
$\mathrm{V}_{\text {I(bias) }}$	input bias voltage		2	-	3.2	V
I_{0}	output current		-	-	750	mA
Thermal data; in accordance with IEC 747-1						
$\mathrm{T}_{\text {stg }}$	storage temperature		-55	-	+150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {amb }}$	ambient temperature		-25	-	+85	${ }^{\circ} \mathrm{C}$
T_{j}	junction temperature		-	-	+150	${ }^{\circ} \mathrm{C}$

Full bridge vertical deflection output circuit in LVDMOS with east-west amplifier

ORDERING INFORMATION

TYPE NUMBER	PACKAGE		
	NAME	DESCRIPTION	VERSION
TDA8358J	DBS13P	plastic DIL-bent-SIL power package; 13 leads (lead length 12 mm)	SOT141-6

BLOCK DIAGRAM

Fig. 1 Block diagram.

Full bridge vertical deflection output circuit in LVDMOS with east-west amplifier

PINNING

SYMBOL	PIN	DESCRIPTION
INA	1	positive vertical input
INB	2	negative vertical input
V_{P}	3	supply voltage
OUTB	4	vertical output voltage B
INEW	5	east-west input voltage
VGND	6	vertical ground
EWGND	7	east-west ground
OUTEW	8	east-west output voltage
V $_{\text {FB }}$	9	flyback supply voltage
OUTA	10	vertical output voltage A
GUARD	11	guard output voltage
FEEDB	12	input measuring resistor
COMP	13	input compensation current

The die has been glued to the metal block of the package. If the metal block is not insulated from the heatsink, the heatsink shall only be connected directly to pin VGND.

Fig. 2 Pin configuration.

FUNCTIONAL DESCRIPTION

Vertical output stage

The vertical driver circuit has a bridge configuration. The deflection coil is connected between the complimentary driven output amplifiers. The differential input circuit is voltage driven. The input circuit is specially designed for direct connection to driver circuits delivering a differential signal but it is also suitable for single-ended applications. For processors with output currents, the currents are converted to voltages by the conversion resistors $\mathrm{R}_{\mathrm{CV} 1}$ and $\mathrm{R}_{\mathrm{CV} 2}$ (see Fig.3) connected to pins INA and INB. The differential input voltage is compared with the voltage across the measuring resistor R_{M}, thus providing feedback information. The voltage across R_{M} is proportional with the output current. The relationship between the differential input voltage and the output current is defined by:
$V_{i(d i f)(p-p)}=I_{o(p-p)} \times R_{M} ; V_{i_{(d i f)(p-p)}}=V_{\text {INA }}-V_{\text {INB }}$
The output current should not exceed 3.2 A (p-p) and is determined by the value of R_{M} and $R_{C V}$. The allowable input voltage range is 100 mV to 1.6 V for each input. The formula given does not include internal bondwire resistances. Depending on the value of R_{M} and the internal bondwire resistance (typical value $50 \mathrm{~m} \Omega$) the actual value of the current in the deflection coil will be about 5% lower than calculated.

Flyback supply

The flyback voltage is determined by the flyback supply voltage V_{FB}. The principle of two supply voltages (class G) allows to use an optimum supply voltage V_{P} for scan and an optimum flyback supply voltage $\mathrm{V}_{\text {FB }}$ for flyback, thus very high efficiency is achieved. The available flyback output voltage across the coil is almost equal to V_{FB}, due to the absence of a coupling capacitor which is not required in a bridge configuration. The very short rise and fall times of the flyback switch are determined mainly by the slew rate value of more than $300 \mathrm{~V} / \mu \mathrm{s}$.

Protection

The output circuit contains protection circuits for:

- Too high die temperature
- Overvoltage of output A.

Full bridge vertical deflection output circuit in LVDMOS with east-west amplifier

Guard circuit

A guard circuit with output pin GUARD is provided.
The guard circuit generates a HIGH-level during the flyback period. The guard circuit is also activated for one of the following conditions:

- During thermal protection $\left(\mathrm{T}_{\mathrm{j}} \approx 170^{\circ} \mathrm{C}\right)$
- During an open-loop condition.

The guard signal can be used for blanking the picture tube and signalling fault conditions. The vertical synchronization pulses of the guard signal can be used by an On Screen Display (OSD) microcontroller.

Damping resistor compensation

HF loop stability is achieved by connecting a damping resistor $R_{D 1}$ (see Fig.4) across the deflection coil. The current values in $R_{D 1}$ during scan and flyback are significantly different. Both the resistor current and the deflection coil current flow into measuring resistor R_{M}, resulting in a too low deflection coil current at the start of the scan.

The difference in the damping resistor current values during scan and flyback have to be externally compensated in order to achieve a short settling time.

For that purpose a compensation resistor $\mathrm{R}_{\mathrm{CMP}}$ is connected between pins OUTA and COMP. The value of $\mathrm{R}_{\mathrm{CMP}}$ is calculated by:
$R_{C M P}=\frac{\left(V_{F B}-V_{\text {loss }(F B)}-V_{P}\right) \times R_{D 1} \times\left(R_{S}+300\right)}{\left(V_{F B}-V_{\text {loss }(F B)}-I_{\text {coil(peak) }} \times R_{\text {coil }}\right) \times R_{M}}$
where:

- $\mathrm{R}_{\text {coil }}$ is the coil resistance
- $\mathrm{V}_{\text {loss(FB) }}$ is the voltage loss between pins V_{FB} and OUTA at flyback.

East-west amplifier

The east-west amplifier is current driven. The output can only sink currents of the diode modulator circuit. A feedback resistor (see Fig.4) has to be connected between the input and output of the inverting east-west amplifier in order to convert the east-west correction input current into an output voltage. The output voltage of the east-west circuit at pin OUTEW is given by:
$\mathrm{V}_{\text {OUTEW }} \approx \mathrm{I}_{\text {INEW }} \times \mathrm{R}_{\text {EWF }}+\mathrm{V}_{\text {INEW }}$
The maximum output voltage is $\mathrm{V}_{\mathrm{o}(\max)}=68 \mathrm{~V}$, while the maximum output current of the circuit is $\mathrm{I}_{\mathrm{O}(\max)}=750 \mathrm{~mA}$.

Full bridge vertical deflection output circuit in LVDMOS with east-west amplifier

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 60134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V_{P}	supply voltage		-	18	V
V_{FB}	flyback supply voltage		-	68	V
$\Delta \mathrm{V}_{\text {VGND-EWGND }}$	voltage difference between pins VGND and EWGND		-	0.3	V
V_{n}	DC voltage pins OUTA and OUTEW pin OUTB pins INA, INB, INEW, GUARD, FEEDB, and COMP	note 1	$\left\lvert\, \begin{aligned} & - \\ & - \\ & -0.5 \end{aligned}\right.$	$\begin{aligned} & 68 \\ & V_{P} \\ & V_{P} \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
I_{n}	DC current pins OUTA and OUTB pins OUTA and OUTB pins INA, INB, INEW, GUARD, FEEDB, and COMP pin OUTEW	during scan (p-p) at flyback (peak); t $\leq 1.5 \mathrm{~ms}$	-20	$\begin{aligned} & 3.2 \\ & \pm 1.8 \\ & +20 \\ & 750 \end{aligned}$	A A mA mA
$\mathrm{I}_{\text {u }}$	latch-up current	input current into any pin; pin voltage is $1.5 \times \mathrm{V}_{\mathrm{p}} ; \mathrm{T}_{\mathrm{j}}=150^{\circ} \mathrm{C}$	-	+200	mA
		input current out of any pin; pin voltage is $-1.5 \times \mathrm{V}_{\mathrm{P}} ; \mathrm{T}_{\mathrm{j}}=150^{\circ} \mathrm{C}$	-200	-	mA
$\mathrm{V}_{\text {es }}$	electrostatic handling voltage	machine model; note 2	-350	+350	V
		human body model; note 3	-4000	+4000	V
P_{EW}	east-west power dissipation	note 4	-	4	W
$\mathrm{P}_{\text {tot }}$	total power dissipation		-	15	W
$\mathrm{T}_{\text {stg }}$	storage temperature		-55	+150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{amb}}$	ambient temperature		-25	+85	${ }^{\circ} \mathrm{C}$
T_{j}	junction temperature	note 5	-	+150	${ }^{\circ} \mathrm{C}$

Notes

1. When the voltage at pin OUTA supersedes 70 V the circuit will limit the voltage.
2. Equivalent to 200 pF capacitance discharge through a 0Ω resistor.
3. Equivalent to 100 pF capacitance discharge through a $1.5 \mathrm{k} \Omega$ resistor.
4. For repetitive time durations of $t<0.1 \mathrm{~ms}$ or a non-repetitive time duration of $\mathrm{t}<5 \mathrm{~ms}$ the maximum (peak) east-west power dissipation $\mathrm{P}_{\mathrm{EW} \text { (peak) }}=15 \mathrm{~W}$.
5. Internally limited by thermal protection at $\mathrm{T}_{\mathrm{j}} \approx 170^{\circ} \mathrm{C}$.

THERMAL CHARACTERISTICS
In accordance with IEC 747-1.

SYMBOL	PARAMETER	CONDITIONS	VALUE	UNIT
$\mathrm{R}_{\mathrm{th}(j-\mathrm{c})}$	thermal resistance from junction to case		4	K/W
$\mathrm{R}_{\mathrm{th}(j-\mathrm{a})}$	thermal resistance from junction to ambient	in free air	40	K/W

Full bridge vertical deflection output circuit in LVDMOS with east-west amplifier

CHARACTERISTICS

$\mathrm{V}_{\mathrm{P}}=12 \mathrm{~V} ; \mathrm{V}_{\mathrm{FB}}=45 \mathrm{~V} ; \mathrm{f}_{\text {vert }}=50 \mathrm{~Hz} ; \mathrm{V}_{\mathrm{l} \text { (bias) }}=880 \mathrm{mV} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$; measured in test circuit of Fig.3; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Supplies						
V_{P}	operating supply voltage		7.5	12	18	V
$\mathrm{V}_{\text {FB }}$	flyback supply voltage	note 1	$2 \times \mathrm{V}_{\mathrm{P}}$	45	66	V
$\mathrm{I}_{\mathrm{q}(\mathrm{P})(\mathrm{av})}$	average quiescent supply current	during scan	-	10	15	mA
$\mathrm{I}_{\text {(P) }}$	quiescent supply current	no signal; no load	-	45	75	mA
$\mathrm{l}_{\mathrm{q}(\mathrm{FB})(\mathrm{av})}$	average quiescent flyback supply current	during scan	-	-	10	mA

Inputs A and B

$\mathrm{V}_{\mathrm{i}(\text { p-p) }}$	input voltage (peak-to-peak value)	note 2	-	1000	1500	mV
$\mathrm{V}_{(\text {bias })}$	input bias voltage	note 2	100	880	1600	mV
$\mathrm{I}_{\text {(bias })}$	input bias current		-	25	35	$\mu \mathrm{~A}$

Outputs A and B						
$\mathrm{V}_{\text {loss(1) }}$	voltage loss first scan part	note 3 $\begin{aligned} & \mathrm{I}_{0}=1.1 \mathrm{~A} \\ & \mathrm{I}_{0}=1.6 \mathrm{~A} \end{aligned}$	-	\|-	$\begin{aligned} & 4.5 \\ & 6.6 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
$\mathrm{V}_{\text {loss(2) }}$	voltage loss second scan part	note 4 $\begin{aligned} & \mathrm{I}_{\mathrm{O}}=-1.1 \mathrm{~A} \\ & \mathrm{I}_{\mathrm{O}}=-1.6 \mathrm{~A} \end{aligned}$		$\mid-$	$\begin{aligned} & 3.3 \\ & 4.8 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
$\mathrm{I}_{0(p-p)}$	output current (peak-to-peak value)		-	-	3.2	A
LE	linearity error	$\mathrm{I}_{\mathrm{o}(p-p)}=3.2 \mathrm{~A}$; notes 5 and 6 adjacent blocks non-adjacent blocks	$\left.\right\|_{-} ^{-}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & \mathrm{\%} \\ & \% \end{aligned}$
$\mathrm{V}_{\text {offset }}$	offset voltage	$\begin{gathered} \hline \text { across } R_{M} ; V_{i(\text { dif) }}=0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{l} \text { (bias) }}=200 \mathrm{mV} \\ \mathrm{~V}_{\text {I(bias) })}=1 \mathrm{~V} \\ \hline \end{gathered}$	\|-	\|-	$\begin{aligned} & \pm 15 \\ & \pm 20 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
$\Delta \mathrm{V}_{\text {offset(T) }}$	offset voltage variation with temperature	across $\mathrm{R}_{\mathrm{M}} ; \mathrm{V}_{\mathrm{i}(\text { dif) }}=0 \mathrm{~V}$	-	-	40	$\mu \mathrm{V} / \mathrm{K}$
V_{O}	DC output voltage	$\mathrm{V}_{\text {i(dif) }}=0 \mathrm{~V}$	-	$0.5 \times \mathrm{V}_{\mathrm{P}}$	-	V
$\mathrm{G}_{\mathrm{v}(\mathrm{lO})}$	open-loop voltage gain	notes 7 and 8	-	60	-	dB
$\mathrm{f}_{-3 \mathrm{~dB}(\mathrm{~h})}$	high -3 dB cut-off frequency	open-loop	-	1	-	kHz
G_{v}	voltage gain	note 9	-	1	-	
$\Delta \mathrm{G}_{\mathrm{v}(\mathrm{T})}$	voltage gain variation with temperature		-	-	10^{-4}	K^{-1}
PSRR	power supply rejection ratio	note 10	80	90	-	dB

Full bridge vertical deflection output circuit in LVDMOS with east-west amplifier

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Flyback switch						
$\mathrm{I}_{\text {(peak) }}$	maximum (peak) output current	$\mathrm{t} \leq 1.5 \mathrm{~ms}$	-	-	± 1.8	A
$\mathrm{V}_{\text {loss(FB) }}$	voltage loss at flyback	$\begin{aligned} & \text { note } 11 \\ & \mathrm{I}_{0}=1.1 \mathrm{~A} \\ & \mathrm{I}_{0}=1.6 \mathrm{~A} \end{aligned}$	$\mid-$	$\begin{aligned} & 7.5 \\ & 8 \\ & \hline \end{aligned}$	$\begin{array}{\|l} 8.5 \\ 9 \end{array}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Guard circuit						
$\mathrm{V}_{\text {O(grd) }}$	guard output voltage	$\mathrm{l}_{\mathrm{O}(\mathrm{grd})}=100 \mu \mathrm{~A}$	5	6	7	V
$\mathrm{V}_{\text {O(grd)(max) }}$	allowable guard voltage	maximum leakage current $\mathrm{I}_{\mathrm{L}(\max)}=10 \mu \mathrm{~A}$	-	-	18	V
$\mathrm{l}_{\text {(grd) }}$	output current	$\mathrm{V}_{\mathrm{O}(\mathrm{grd})}=0 \mathrm{~V}$; not active	-	-	10	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{O}(\mathrm{grd})}=4.5 \mathrm{~V}$; active	1	-	2.5	mA
East-west amplifier						
V_{0}	output voltage	at pin OUTEW	-	-	68	V
$\mathrm{V}_{\text {loss }}$	voltage loss	$\mathrm{I}_{0}=750 \mathrm{~mA}$; note 12	-	-	5	V
$\mathrm{V}_{\text {(bias) }}$	input bias voltage		2	2.5	3.2	V
$\mathrm{I}_{\text {(bias) }}$	input bias current	into pin INEW; note 13 $\begin{aligned} & \mathrm{I}_{\mathrm{O}}=100 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA} \end{aligned}$	-	$\begin{array}{\|l\|} \hline 2.5 \\ 11.5 \end{array}$	\|-	$\mu \mathrm{A}$ $\mu \mathrm{A}$
$\mathrm{G}_{\mathrm{v} \text { (0) }}$	open-loop voltage gain		-	30	-	dB
THD	harmonic distortion		-	0.5	1	\%
$\mathrm{f}_{-3 \mathrm{~dB}(\mathrm{~h})}$	high -3 dB cut-off frequency		-	-	1	MHz

Full bridge vertical deflection output circuit in LVDMOS with east-west amplifier

Notes

1. To limit $\mathrm{V}_{\text {OUTA }}$ to $68 \mathrm{~V}, \mathrm{~V}_{\mathrm{FB}}$ must be 66 V due to the voltage drop of the internal flyback diode between pins OUTA and V_{FB} at the first part of the flyback.
2. Allowable input range for both inputs: $\mathrm{V}_{\mathrm{l} \text { (bias) }}+\mathrm{V}_{\mathrm{i}}<1600 \mathrm{mV}$ and $\mathrm{V}_{\mathrm{l} \text { (bias) }}-\mathrm{V}_{\mathrm{i}}>100 \mathrm{mV}$.
3. This value specifies the sum of the voltage losses of the internal current paths between pins V_{P} and OUTA, and between pins OUTB and GND. Specified for $\mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C}$. The temperature coefficient for $\mathrm{V}_{\text {loss }(1)}$ is a positive value.
4. This value specifies the sum of the voltage losses of the internal current paths between pins V_{P} and OUTB, and between pins OUTA and GND. Specified for $T_{j}=125^{\circ} \mathrm{C}$. The temperature coefficient for $\mathrm{V}_{\mathrm{loss}(2)}$ is a positive value.
5. The linearity error is measured for a linear input signal without S-correction and is based on the 'on screen' measurement principle. This method is defined as follows. The output signal is divided in 22 successive equal time parts. The 1 st and 22 nd parts are ignored, and the remaining 20 parts form 10 successive blocks k. A block consists of two successive parts. The voltage amplitudes are measured across R_{M}, starting at $k=1$ and ending at $k=10$, where V_{k} and $\mathrm{V}_{\mathrm{k}+1}$ are the measured voltages of two successive blocks. $\mathrm{V}_{\text {min }}, \mathrm{V}_{\text {max }}$ and $\mathrm{V}_{\text {avg }}$ are the minimum, maximum and average voltages respectively. The linearity errors are defined as:
a) $\mathrm{LE}=\frac{\mathrm{V}_{\mathrm{k}}-\mathrm{V}_{\mathrm{k}+1}}{\mathrm{~V}_{\mathrm{avg}}} \times 100 \%$ (adjacent blocks)
b) $L E=\frac{V_{\text {max }}-V_{\text {min }}}{V_{\text {avg }}} \times 100 \%$ (non adjacent blocks)
6. The linearity errors are specified for a minimum input voltage at pin 1 or pin 2 of 300 mV . Lower input voltages lead to voltage dependent S-distortion in the input stage.
7. $\mathrm{G}_{\mathrm{V} \text { (OI) }}=\frac{\mathrm{V}_{\text {OUTA }}-\mathrm{V}_{\text {OUTB }}}{\mathrm{V}_{\text {FEEDB }}-\mathrm{V}_{\text {OUTB }}}$
8. Pin FEEDB not connected.
9. $\mathrm{G}_{\mathrm{V}}=\frac{\mathrm{V}_{\text {FEEDB }}-\mathrm{V}_{\text {OUTB }}}{\mathrm{V}_{\text {INA }}-\mathrm{V}_{\text {INB }}}$
10. $\mathrm{V}_{\mathrm{P}(\text { ripple })}=500 \mathrm{mV}\left(\mathrm{RMS}\right.$ value); $50 \mathrm{~Hz}<\mathrm{f}_{\mathrm{P} \text { (ripple) }}<1 \mathrm{kHz}$; measured across R_{M}.
11. This value specifies the internal voltage loss of the current path between pins $\mathrm{V}_{F B}$ and OUTA.
12. This value specifies the internal voltage loss of the current path between pins OUTEW and EWGND.
13. Measured for $R_{E W F}=10 \mathrm{k} \Omega ; \mathrm{R}_{E W L}=30 \Omega ; \mathrm{V}_{0}=6 \mathrm{~V}$.
a) For $\mathrm{I}_{0}=100 \mathrm{~mA}$ and a voltage of 9 V at $\mathrm{R}_{\mathrm{EWL}}$ connected to the line output transformer, the east-west amplifier input current (see Fig.4) is $\mathrm{I}_{\mathrm{i}}=300 \mu \mathrm{~A}$.
b) For $\mathrm{I}_{0}=500 \mathrm{~mA}$ and a voltage of 21 V at $\mathrm{R}_{\text {EWL }}$ connected to the line output transformer, the east-west amplifier input current (see Fig.4) is $\mathrm{I}_{\mathrm{i}}=350 \mu \mathrm{~A}$.

Full bridge vertical deflection output circuit in LVDMOS with east-west amplifier

APPLICATION INFORMATION

Fig. 3 Test diagram.

$f_{\text {vert }}=50 \mathrm{~Hz} ; \mathrm{t}_{\text {FB }}=640 \mu \mathrm{~s} ; \mathrm{I}_{(\text {bias })}=400 \mu \mathrm{~A} ; \mathrm{I}_{(\mathrm{l}(\mathrm{p})}=475 \mu \mathrm{~A} ; \mathrm{I}_{\mathrm{o}(\mathrm{p}-\mathrm{p})}=2.4 \mathrm{~A}$.
Fig． 4 Application diagram．

Full bridge vertical deflection output circuit in LVDMOS with east-west amplifier

\mathbf{R}_{M} calculation

Before calculating the measuring resistor $\left(R_{M}\right)$, the differential input voltage $\left[\mathrm{V}_{\mathrm{i}(\mathrm{dif})}\right.$] has to be known. This voltage can be measured between pins INA and INB. The calculation is as follows: $R_{M}=\frac{V_{i(\text { dif)(p-p) }}}{I_{o(p-p)}}$

Most of the TV signal processors from Philips have a current output. This current has to be converted by resistors at the input of the TDA8358J ($\mathrm{R}_{\mathrm{CV} 1}$ and $\left.\mathrm{R}_{\mathrm{CV} 2}\right)$. The voltage across these resistors can be calculated. The differential input voltage is given in the following equation (see also Fig 5):
$V_{i(d i f)(p-p)}=I_{i 1(p-p)} \times R_{C V 1}-\left[-I_{i 2(p-p)}\right] \times R_{C V 2}$

MBL520
Fig. 5 Differential input voltage.

Values for these currents are, for instance:
$\mathrm{I}_{\mathrm{i}(\mathrm{bias})}=400 \mu \mathrm{~A} ; \mathrm{I}_{\mathrm{i} 1(\mathrm{p}-\mathrm{p})}=\mathrm{I}_{\mathrm{i} 2(\mathrm{p}-\mathrm{p})}=475 \mu \mathrm{~A}$.
Therefore the differential input voltage be as follows:
$V_{i(d i f)(p-p)}=475 \mu \mathrm{~A} \times 2.2 \mathrm{k} \Omega-(-475 \mu \mathrm{~A} \times 2.2 \mathrm{k} \Omega)$
$=2.09 \mathrm{~V}$

Supply voltage calculation

For calculating the minimum required supply voltage, several specific application parameter values have to be known. These parameters are the required maximum (peak) deflection coil current $I_{\text {coil(peak) }}$, the coil impedance $\mathrm{R}_{\text {coil }}$ and $\mathrm{L}_{\text {coil }}$ and the measuring resistance of R_{M}. The required maximum (peak) deflection coil current should also include the overscan.

The deflection coil resistance has to be multiplied by 1.2 in order to take account of hot conditions.

Chapter "Characteristics" supplies values for the voltage losses of the vertical output stage. For the first part of the scan the voltage loss is given by $\mathrm{V}_{\text {loss(1) }}$. For the second part of the scan the voltage loss is given by $\mathrm{V}_{\text {loss(2) }}$.
The voltage drop across the deflection coil during scan is determined by the coil impedance. For the first part of the scan the inductive contribution and the ohmic contribution to the total coil voltage drop are of opposite sign, while for the second part of the scan the inductive part and the ohmic part have the same sign.

For the vertical frequency the maximum frequency occurring must be applied to the calculations.
The required power supply voltage V_{P} for the first part of the scan is given by:
$V_{P(1)}=I_{\text {coil(peak) }} \times\left(R_{\text {coil }}+R_{M}\right)$
$-\mathrm{L}_{\text {coil }} \times 2 \mathrm{I}_{\text {coil(peak) }} \times \mathrm{f}_{\text {vert(max) }}+\mathrm{V}_{\text {loss(1) }}$
The required power supply voltage V_{P} for the second part of the scan is given by:
$V_{P(2)}=I_{\text {coil(peak) }} \times\left(R_{\text {coil }}+R_{M}\right)$
$+\mathrm{L}_{\text {coil }} \times 2 \mathrm{I}_{\text {coil(peak) }} \times \mathrm{f}_{\text {vert(max) }}+\mathrm{V}_{\text {loss(2) }}$
The minimum required supply voltage V_{P} shall be the highest of the two values $\mathrm{V}_{\mathrm{P}(1)}$ and $\mathrm{V}_{\mathrm{P}(2)}$. Spread in supply voltage and component values also has to be taken into account.

Flyback supply voltage calculation

If the flyback time is known, the required flyback supply voltage can be calculated by the simplified formula:
$V_{F B}=I_{\text {coil }(p-p)} \times \frac{R_{\text {coil }}+R_{M}}{1-e^{-t_{F B} / x}}$
where:

$$
x=\frac{L_{\text {coil }}}{R_{\text {coil }}+R_{M}}
$$

Full bridge vertical deflection output circuit in LVDMOS with east-west amplifier

The flyback supply voltage calculated this way is approximately 5% to 10% higher than required.

Calculation of the power dissipation of the vertical output stage

The power dissipation of the vertical output stage is given by the formula:
$P_{V}=P_{\text {sup }}-P_{L}$
The power to be supplied is given by the formula:
$\mathrm{P}_{\text {sup }}=\mathrm{V}_{\mathrm{P}} \times \frac{\mathrm{I}_{\text {coil(peak) }}}{2}+\mathrm{V}_{\mathrm{P}} \times 0.015[\mathrm{~A}]+0.3[\mathrm{~W}]$
In this formula 0.3 [W] represents the average value of the losses in the flyback supply.
The average external load power dissipation in the deflection coil and the measuring resistor is given by the formula:
$P_{L}=\frac{\left(I_{\text {coil(peak) }}\right)^{2}}{3} \times\left(R_{\text {coil }}+R_{M}\right)$

Example

Table 1 Application values

SYMBOL	VALUE	UNIT
$\mathrm{I}_{\text {coil }(\text { peak })}$	1.2	A
$\mathrm{I}_{\text {coil }(p-\mathrm{p})}$	2.4	A
$\mathrm{~L}_{\text {coil }}$	5	mH
$\mathrm{R}_{\text {coil }}$	6	Ω
R_{M}	0.6	Ω
$\mathrm{f}_{\text {vert }}$	50	Hz
$\mathrm{t}_{\text {FB }}$	640	$\mu \mathrm{~s}$

Table 2 Calculated values

SYMBOL	VALUE	UNIT
V_{P}	14	V
$\mathrm{R}_{\mathrm{M}}+\mathrm{R}_{\text {coil }}$ (hot)	7.8	Ω
$\mathrm{t}_{\text {vert }}$	0.02	s
x	0.000641	
$\mathrm{~V}_{\mathrm{FB}}$	30	V
$\mathrm{P}_{\text {sup }}$	8.91	W
P_{L}	3.74	W
P_{V}	5.17	W

Power dissipation calculation for the east-west stage

In general the shape of the east-west output wave form is a parabola. The output voltage will be higher at the beginning and end of the vertical scan compared to the voltage at the scan middle, while the output current will be higher at the scan middle. This results in an almost uniform power dissipation distribution during scan. Therefore the power dissipation can be calculated by multiplying the average values of the output voltage and the output current of pin OUTEW.
When verifying the dissipation the switch-on and switch-off dissipation should also be taken into account. Power dissipation during start-up can be 3 to 5 times higher than during normal operation.

Heatsink calculation

The value of the heatsink can be calculated in a standard way with a method based on average temperatures. The required thermal resistance of the heatsink is determined by the maximum die temperature of $150^{\circ} \mathrm{C}$. In general we recommend a design for an average die temperature not exceeding $130{ }^{\circ} \mathrm{C}$. It should be noted that the heatsink thermal resistance $R_{\text {th }(h-a)}$ found by performing a standard calculation will be lower then normally found for a vertical deflection stand alone device, due to the contribution of the EW power dissipation to this value.

EXAMPLE

Measured or known values:
$P_{E W}=3 \mathrm{~W} ; \mathrm{P}_{\mathrm{V}}=6 \mathrm{~W} ; \mathrm{T}_{\mathrm{amb}}=40^{\circ} \mathrm{C} ; \mathrm{T}_{\mathrm{j}}=130^{\circ} \mathrm{C}$;
$R_{\mathrm{th}(\mathrm{j}-\mathrm{c})}=4 \mathrm{~K} / \mathrm{W} ; \mathrm{R}_{\mathrm{th}(\mathrm{c}-\mathrm{h})}=1 \mathrm{~K} / \mathrm{W}$.
The required heatsink thermal resistance is given by:
$R_{t h(h-a)}=\frac{T_{j}-T_{a m b}}{P_{E W}+P_{V}}-\left(R_{t h(j-c)}+R_{t h(c-h)}\right)$
When we use the values known we find:
$R_{\text {th(h-a) }}=\frac{130-40}{3+6}-(4+1)=5 \mathrm{~K} / \mathrm{W}$
The heatsink temperature will be:
$\mathrm{T}_{\mathrm{h}}=\mathrm{T}_{\text {amb }}+\mathrm{R}_{\text {th(h-a) }} \times \mathrm{P}_{\text {tot }}=40+5 \times 9=85^{\circ} \mathrm{C}$

Full bridge vertical deflection output circuit in LVDMOS with east-west amplifier

Equivalent thermal resistance network

The TDA8358J has two independent power dissipating systems, the vertical output circuit and the east-west circuit.

It is recommended to verify the individual maximum (peak) junction temperatures of both circuits. Therefore the maximum (peak) power dissipations of the circuits and also the heatsink temperature should be measured. The maximum (peak) junction temperatures can be calculated by using an equivalent thermal network (see Fig.6).
The network only includes the contribution of the maximum (peak) power dissipation $\mathrm{P}_{\mathrm{TRv}(\text { peak })}$, being the dissipation of the most critical transistor internally connected to pins OUTA and VGND. The model assumes equivalent maximum (peak) power dissipations during the different vertical scan stages for all the functionally paired transistors. The calculated maximum (peak) junction temperatures should not exceed $\mathrm{T}_{\mathrm{j}}=150^{\circ} \mathrm{C}$.

Fig. 6 Equivalent thermal resistance network.

Example

Measured or known values:

- The east-west power dissipation: $\mathrm{P}_{\mathrm{EW}}=3 \mathrm{~W}$
- The vertical power dissipation: $\mathrm{PV}_{\mathrm{V}}=6 \mathrm{~W}$
- The maximum (peak) power dissipation of the most critical transistor: $\mathrm{P}_{\mathrm{TRv} \text { (peak) }}=5 \mathrm{~W}$
- The case temperature: $\mathrm{T}_{\mathrm{C}}=85^{\circ} \mathrm{C}$.

The IC total power dissipation is:
$P_{\text {tot }}=P_{E W}+P_{V}=6+3=9 W$
It should be noted that the allowed IC total power dissipation is $P_{\text {tot }}=15 \mathrm{~W}$ (maximum value).

The maximum (peak) temperature $T_{P 1 \text { (peak) }}$ is given by:

- $T_{\text {P1 (peak })}=T_{\mathrm{C}}+\left(\mathrm{P}_{\mathrm{EW}}+\mathrm{P}_{\mathrm{TRv}(\text { peak })}\right) \times \mathrm{R}_{\mathrm{th}(\mathrm{P} 1-\mathrm{c})}$ $=85+(3+5) \times 2.2=102.6^{\circ} \mathrm{C}$

The maximum (peak) junction temperatures for the output circuits are given by:

- $\mathrm{T}_{\mathrm{j}(\mathrm{EW}) \text { (peak) }}=\mathrm{T}_{\mathrm{P} 1 \text { (peak) }}+\mathrm{R}_{\text {th(EW-P1) }} \times \mathrm{P}_{\mathrm{EW}}$ $=102.6+10.5 \times 3=134.1^{\circ} \mathrm{C}$
- $\mathrm{T}_{\mathrm{j}(\text { TRv) (peak) }}=\mathrm{T}_{\mathrm{P} 1 \text { (peak) }}+\mathrm{R}_{\text {th(TRv-P1) }} \times \mathrm{P}_{\text {TRv(peak) }}$ $=102.6+5.2 \times 5=128.6^{\circ} \mathrm{C}$

Full bridge vertical deflection output circuit in LVDMOS with east-west amplifier

INTERNAL PIN CONFIGURATION

PIN	SYMBOL	EQUIVALENT CIRCUIT
1	INA	
2	INB	
3	V_{P}	
4	OUTB	- (9)
6	VGND	-
9	$\mathrm{V}_{\text {FB }}$	
10	OUTA	
5	INEW	
7	EWGND	
8	OUTEW	

Full bridge vertical deflection output circuit in LVDMOS with east-west amplifier

PIN	SYMBOL	EQUIVALENT CIRCUIT
11	GUARD	
12	FEEDB	
13	COMP	

Full bridge vertical deflection output circuit

 in LVDMOS with east-west amplifier
PACKAGE OUTLINE

DBS13P: plastic DIL-bent-SIL power package; 13 leads (lead length 12 mm)
SOT141-6

DIMENSIONS (mm are the original dimensions)

UNIT	\mathbf{A}	$\mathbf{A}_{\mathbf{2}}$	$\mathbf{b}_{\mathbf{p}}$	\mathbf{c}	$\mathbf{D}^{(\mathbf{1})}$	\mathbf{d}	$\mathbf{D}_{\mathbf{h}}$	$\mathbf{E}^{(\mathbf{1})}$	\mathbf{e}	$\mathbf{e}_{\mathbf{1}}$	$\mathbf{e}_{\mathbf{2}}$	$\mathbf{E}_{\mathbf{h}}$	\mathbf{j}	\mathbf{L}	$\mathbf{L}_{\mathbf{3}}$	\mathbf{m}	\mathbf{Q}	\mathbf{v}	\mathbf{w}	\mathbf{x}	$\mathbf{Z}^{(\mathbf{1})}$
mm	17.0	4.6	0.75	0.48	24.0	20.0	10	12.2	3.4	1.7	5.08	6	3.4	12.4	2.4			2.3	2.1	0.8	0.25
	15.5	4.4	0.60	0.38	23.6	19.6	10	11.8	3.4	2.03	2.00										

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ		
SOT141-6				\square	$\begin{aligned} & -97-12-16 \\ & 99-12-17 \end{aligned}$

Full bridge vertical deflection output circuit in LVDMOS with east-west amplifier

SOLDERING

Introduction to soldering through-hole mount packages

This text gives a brief insight to wave, dip and manual soldering. A more in-depth account of soldering ICs can be found in our "Data Handbook IC26; Integrated Circuit Packages" (document order number 9398652 90011).

Wave soldering is the preferred method for mounting of through-hole mount IC packages on a printed-circuit board.

Soldering by dipping or by solder wave

The maximum permissible temperature of the solder is $260^{\circ} \mathrm{C}$; solder at this temperature must not be in contact with the joints for more than 5 seconds.

The total contact time of successive solder waves must not exceed 5 seconds.

The device may be mounted up to the seating plane, but the temperature of the plastic body must not exceed the specified maximum storage temperature ($\mathrm{T}_{\text {stg(max) }}$). If the printed-circuit board has been pre-heated, forced cooling may be necessary immediately after soldering to keep the temperature within the permissible limit.

Manual soldering

Apply the soldering iron (24 V or less) to the lead(s) of the package, either below the seating plane or not more than 2 mm above it. If the temperature of the soldering iron bit is less than $300^{\circ} \mathrm{C}$ it may remain in contact for up to 10 seconds. If the bit temperature is between 300 and $400^{\circ} \mathrm{C}$, contact may be up to 5 seconds.

Suitability of through-hole mount IC packages for dipping and wave soldering methods

PACKAGE	SOLDERING METHOD	
	DIPPING	WAVE
DBS, DIP, HDIP, SDIP, SIL	suitable	suitable $^{(1)}$

Note

1. For SDIP packages, the longitudinal axis must be parallel to the transport direction of the printed-circuit board.

Full bridge vertical deflection output circuit in LVDMOS with east-west amplifier

DATA SHEET STATUS

DATA SHEET STATUS ${ }^{(1)}$	PRODUCT STATUS	
Objective data	Development	DEFINITIONS
Preliminary data	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.	
Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.	
	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Changes will be communicated according to the Customer Product/Process Change Notification (CPCN) procedure SNW-SQ-650A.

Notes

1. Please consult the most recently issued data sheet before initiating or completing a design.
2. The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.

DEFINITIONS

Short-form specification - The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition - Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.
Application information - Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

DISCLAIMERS

Life support applications - These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.
Right to make changes - Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no licence or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Philips Semiconductors - a worldwide company

Contact information

For additional information please visit http://www.semiconductors.philips.com. Fax: +31 402724825 For sales offices addresses send e-mail to: sales.addresses@www.semiconductors.philips.com.

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

